Evaluation of Parameter Estimation Methods for Fitting Spatial Regression Models

نویسندگان

  • Junfeng Lu
  • Lianjun Zhang
چکیده

Two types of spatial regression models, a spatial lag model (SLM) and a spatial error model (SEM), were applied to fit the height–diameter relationship of trees. SEM had better model fitting and performance than both SLM and ordinary least squares. Moran’s I coefficients showed that SEM effectively reduced the spatial autocorrelation in the model residuals. Both real data and Monte Carlo simulations were used to compare different parameter estimation methods for the two spatial regression models, including maximum likelihood estimation (MLE), Bayesian methods, two-stage least squares (for SLM) and generalized method of moments (GMM) (for SEM). Our results indicated that GMM was close to MLE in terms of model fitting, much easier in computation, and robust to non-normality and outliers. The Bayesian method with heteroscedasticity did not effectively estimate the spatial autoregressive parameters but produced very small biases for the regression coefficients of the model when few outliers existed. FOR. SCI. 56(5):505–514.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Spatial Regression in the Presence of Misaligned data

In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method‎, ‎simulation‎, ‎regression calibration and maximum likelihood‎. In the first two approaches‎, ‎with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...

متن کامل

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010